Quasi-g^{*} *r***-open functions in topology**

¹Govindappa Navalagi Department of Mathematics, KIT Tiptur-572202, Karnataka, India Email: <u>gnavalagi@hotmail.com</u>

²Savita B. Megalamani Department of Mathematics, Government First Grade College, Davanagere-577004, Karnataka,

Email: savibalaji2013@gmail.com

Abstract

The purpose of this paper is to introduce and study the notions of quasi-g $^*\gamma$ -open functions , quasi-g $^*\gamma$ -closed functions in topology via g $^*\gamma$ -closed

Mathematics Subject Classification(2010) : 54A05, 54C08.

Key words: γ -open sets, $g^* \gamma$ -closed sets, $g^* \gamma$ -open sets, quasi- $g^* \gamma$ -open functions and quasi- $g^* \gamma$ -closed functions.

1. Introduction

In 1997, A. A. El-Atik[5], has introduced and studied the concept of γ -open sets and γ -closed sets in topology. In 2007, E. Ekici[7] has defined and studied the concept of γ -normal spaces in topology and concepts of $g\gamma$ -closed sets and γ g-closed sets. In [13], [14] and [15], Navalagi et. al. defined and studied the concepts of $g^*\gamma$ -closed sets , $g^*\gamma$ -open sets, $g^*\gamma$ -continuous functions, $g^*\gamma$ -continuous functions, $g^*\gamma$ -closed functions and $g^*\gamma$ -normal spaces in topology. The aim of this paper is to define and study the concepts of quasi- $g^*\gamma$ -open functions, quasi- $g^*\gamma$ -closed functions.

2. Priliminaries

In this paper (X, τ) and (Y, σ) (or X and Y) we always mean topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset of X, Cl(A) and Int(A) represent the closure of A and the interior of A respectively. The following definitions and results are useful in the sequel:

Definition 2.1: Let X be a topological space. A subset A is called :

(i)semiopen[8] if A⊂Cl(Int(A)),
(ii)preopen[9] if A⊂Int(Cl(A)),
(iii)b-open[2] or sp-open[1] or γ-open[5] if A⊂Cl(Int(A)) ∪Int(Cl(A)).

The complement of semiopen (resp. peropen, b-open or sp-open or γ -open) set is called semiclosed[4] (resp. preclosed[9], b-closed[2] or sp-closed[1] or γ -closed[5]).

The family of all semiopen (resp. preopen, b-open or sp-open or γ -open) sets of a space X is denoted by SO(X)(resp. PO(X), BO(X), SPO(X) or γ O(X)).

Definition 2.2: Let A be a subset of a space X, then the intersection of all semi-closed(resp. preclosed, semipre-closed, γ -closed) sets containing A is called semiclosure[4] (resp. preclosure[6], semipreclosure[1], γ -closure[5]) of A and is denoted by sCl(A) (resp. pCl(A), spCl(A), γ Cl(A)).

Definition 2.3: Let A be a subset of a space X, then semi-interior [4](resp. pre-interior[10], semipre-interior[1], γ -interior[5]) of A is the union of all semiopen(resp. preopen, semipreopem, γ -open) sets contained in A and is denoted by sInt(A) (resp. pInt(A), spInt(A), γ Int(A)).

Definition 2.4: A subset A of a space X is said to be g^{γ} -closed[7] if γ Cl(A) \subseteq U whenever A \subseteq U and U $\in \tau$.

The complement of g^{γ} -closed set is said to be g^{γ} -open.

Definition 2.5: A subset A of a space X is said to be γ g-closed[11] if γ Cl(A) \subseteq U whenever A \subseteq U and U $\in \gamma$ O(X).

The complement of γ g-closed set is said to be γ g-open.

The definitions of be $g\gamma$ -closed set and γg -closed set respectively, defined by E. Ekici[7] and El-Maghrabi[11] are the same.

Definition 2.6: A subset A of a space X is called $g^* \gamma$ -closed[13] set if Cl(A) \subseteq U whenever A \subseteq U and U is γ -open set in X.

Definition 2.7: A subset A of a space X is called $g^* \gamma$ -open[13] set if $F \subseteq Int(A)$ whenever $F \subseteq A$ and F is γ -closed set in X.

The family of all $g^* \gamma$ -open sets in topological space X is denoted by $g^* \gamma O(X)$.

Definition 2.8: Let A be a subset of a space X, then the intersection of all $g^* \gamma$ -closed sets containing A is called the $g^* \gamma$ -closure[13] of A and is denoted by $g^* \gamma$ Cl(A).

Definition 2.9: Let A be a subset of a space X, then the union of all $g^* \gamma$ -open sets contained in A is called the $g^* \gamma$ -interior[13] of A and is denoted by $g^* \gamma$ Int(A).

Definition 2.10: A set $U \subseteq X$ is said to be $g^* \gamma$ -neighbourhood [14](in brief, $g^* \gamma$ -nbd) of a point $x \in X$ if and only if there exists $A \in g^* \gamma O(x)$ such that $A \subseteq U$.

Definition 2.11: A function $f: X \rightarrow Y$ is called semiopen[3](resp. preopen[10], semipreopen[12]), if the image of each open set of X is semiopen(resp. preopen, semopreopen) set in Y.

Definition 2.12: A function $f: X \rightarrow Y$ is called semiclosed[16](resp. preclosed[6], semipreclosed[12,17]), if the image of each open set of X is semiclosed(resp. preclosed, semopreclosed) set in Y.

Definition 2.13: A function $f: X \to Y$ is said to be $g^* \gamma$ -open[13] if the image of open set of X is $g^* \gamma$ -open in Y.

Definition 2.14: A function $f: X \to Y$ is said to be $g^* \gamma$ -closed[15] if the image of closed set of X is $g^* \gamma$ -closed set in Y.

Definition 2.15: A function $f: X \to Y$ is said to be $(g^* \gamma, s)$ -open[15](resp. $(g^* \gamma, p)$ -open, $(g^* \gamma, sp)$ -open[15]) if the image of each $g^* \gamma$ -open set of X is semiopen(resp. preopen, semipreopen) in Y.

Definition 2.16: A function $f: X \to Y$ is said to be $(g^* \gamma, s)$ -closed[15](resp. $(g^* \gamma, p)$ -closed, $(g^* \gamma, sp)$ -closed[15]) if the image of each $g^* \gamma$ -closed set of X is semiclosed (resp. preclosed, semipreclosed) in Y.

Definition 2.17: A function $f: X \to Y$ is said to be always $g^* \gamma$ -open[13] (resp. always $g^* \gamma$ closed[13]), if the image of each $g^* \gamma$ -open(resp. $g^* \gamma$ -closed) set of X is $g^* \gamma$ -open(resp. $g^* \gamma$ closed) set in Y **Definition 2.18 :** A function $f: X \to Y$ is said to be $g^* \gamma$ -continuous[13], if the inverse image of each open set of Y is $g^* \gamma$ -open set in X.

Definition 2.19 : A function $f: X \to Y$ is said to be $g^* \gamma$ -irresolute[13], if the inverse image of each $g^* \gamma$ -open set of Y is $g^* \gamma$ -open set in X.

Definition 2.20: A space X is said to be $g^* \gamma$ -normal[15], if for any pair of disjoint closed sets A and B of X, there exist disjoint $g^* \gamma$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

3. Quasi- $g^* \gamma$ -open functions

We define the following:

Definition 3.1: A function $f: X \to Y$ is said to be quasi- $g^* \gamma$ -open if the image of each $g^* \gamma$ -open set of X is an open set in Y.

Now we have the following characterizations:

Theorem 3.2: A function $f: X \to Y$ is said to be quasi- $g^* \gamma$ -open if and only if for every subset U of X, $f(g^* \gamma \operatorname{Int}(U)) \subseteq \operatorname{Int}(f(U))$.

Proof: Let f be a quasi- $g^* \gamma$ -open function. Now, we have $g^* \gamma$ Int(U) \subseteq U and $g^* \gamma$ Int(U) is a $g^* \gamma$ -open set. Hence we obtain that $f(g^* \gamma \operatorname{Int}(U)) \subseteq f(U)$. As $f(g^* \gamma \operatorname{Int}(U))$ is open, $f(g^* \gamma \operatorname{Int}(U)) \subseteq \operatorname{Int}(f(U))$. Conversely, assume that U is a $g^* \gamma$ -open set in X. Then $f(U)=f(g^* \gamma \operatorname{Int}(U)) \subseteq \operatorname{Int}(f(U))$, but $\operatorname{Int}(f(U) \subseteq f(U)$. Consequently $f(U)=\operatorname{Int}(f(U))$, which is open and hence f is quasi- $g^* \gamma$ -open function.

Lemma 3.3: If a function $f: X \to Y$ is quasi- $g^* \gamma$ -open, then $g^* \gamma$ Int $(f^{-1}(A)) \subseteq f^{-1}(Int(A))$ for every subset A of Y.

Proof: Let A be any subset of Y. Then, $g^* \gamma \operatorname{Int}(f^{-1}(A))$ is a $g^* \gamma$ -open set in X and f is quasi- $g^* \gamma$ -open, then $f(g^* \gamma \operatorname{Int}(f^{-1}(A))) \subseteq \operatorname{Int}(f(f^{-1}(A))) \subseteq \operatorname{Int}(A)$. Thus, $g^* \gamma \operatorname{Int}(f^{-1}(A)) \subseteq f^{-1}(\operatorname{Int}(A))$.

Theorem 3.4: For a function $f: X \rightarrow Y$, the following are equivalent:

(i) f is quasi-g^{*} γ -open

(ii) for each subset U of X, $f(g^* \gamma Int(U)) \subseteq Int(f(U))$

(iii) for each $x \in X$ and each $g^* \gamma$ -neighbourhood U of x in X, there exists a neighbourhood V of f(x) in Y such that $V \subseteq f(U)$.

Proof: (i) \Rightarrow (ii) It follows from the theorem 3.2.

(ii) \Rightarrow (iii) Let $x \in X$ and U be an arbitrary $g^* \gamma$ -neighbourhood of x in X. Then there exist a $g^* \gamma$ -open set V in X such that $x \in V \subseteq U$. Then by (ii), we have f(V) =

 $f(g^* \gamma Int(V)) \subseteq Int(f(V))$ and hence f(V)=Int(f(V)). Therefore, it follows that f(V) is open in Y such that $f(x) \in f(V) \subseteq f(U)$.

(iii) \Rightarrow (i) Let U be an arbitrary $g^* \gamma$ -open set in X. Then for each $y \in f(U)$, by (iii) there exist a neighbourhood V_y of y in Y such that $V_y \subseteq f(U)$. As V_y is a neighbourhood of y, there exist an open set W_y in Y such that $y \in W_y \subseteq V_y$. Thus

 $f(U)=\bigcup \{ W_y: y \in f(U) \}$ which is a open set in Y. This implies that f is quasi-g^{*} γ -open function.

Theorem 3.5: A function $f: X \to Y$ is quasi- $g^* \gamma$ -open if and only if for any subset B of Y and for any $g^* \gamma$ -closed set F of X containing $f^{-1}(B)$, there exist a closed set G of Y containing B such that $f^{-1}(G) \subseteq F$.

Proof: Suppose f is quasi-g^{*} γ -open function. Let $B \subseteq Y$ and F be a g^{*} γ -closed set of X containing f⁻¹(B). Now, put G=Y \ f(X-F). It is clear that f⁻¹(B) \subseteq F implies B \subseteq G. Since f is quasi-g^{*} γ -open, we obtain G as a closed set of Y. Moreover, we have f⁻¹(G) \subseteq F.

Conversely, let U be a $g^* \gamma$ -open set of X and put $B=Y \setminus f(U)$. Then $X \setminus U$ is a $g^* \gamma$ -closed set in X containing $f^{-1}(B)$. By hypothesis, there exists a closed set F of Y such that $B \subseteq F$ and $f^{-1}(F) \subseteq X \setminus U$. Hence, we obtain $f(U) \subseteq Y \setminus F$. On the other hand, it follows that $B \subseteq F$, $Y \setminus F \subseteq Y \setminus B = f(U)$.

Thus, we obtain $f(U)=Y \setminus F$ which is open and hence f is a quasi-g^{*} γ -open function.

Theorem 3.6: A function $f: X \to Y$ is a quasi-g^{*} γ -open if and only if $f^{-1}(Cl(B)) \subseteq$

 $g^* \gamma Cl(f^{-1}(B))$ for every subset B of Y.

Proof: Suppose that f is quasi-g^{*} γ -open function. For any subset B of Y, $f^{-1}(B) \subseteq g^* \gamma \operatorname{Cl}(f^{-1}(B))$. Therefore, by theorem 3.5, there exists a closed set F in Y such that $B \subseteq F$ and $f^{-1}(F) \subseteq g^* \gamma \operatorname{Cl}(f^{-1}(B))$. ¹(B)). Therefore, we obtain $f^{-1}(\operatorname{Cl}(B)) \subseteq f^{-1}(F) \subseteq g^* \gamma \operatorname{Cl}(f^{-1}(B))$.

Conversely, let $B \subseteq Y$ and F be a $g^* \gamma$ -closed set of X containing $f^{-1}(B)$. Put W=ClY(B), then we have $B \subseteq W$ and W is closed set and $f^{-1}(W) \subseteq g^* \gamma \operatorname{Cl}(f^{-1}(B)) \subseteq F$.

Then by theorem 3.5, f is quasi-g^{*} γ -open function.

Decompositions of quasi-g^{*} γ -open functions:

Theorem 3.7: Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. The following statements are valid:

(i) If f is quasi-g^{*} γ -open and g is preopen then $g \circ f$ is $(g^* \gamma_p)$ -open function.

(ii) If f is quasi-g^{*} γ -open and g is semiopen then $g \circ f$ is $(g^* \gamma s)$ -open function.

(iii) If f is quasi-g^{*} γ -open and g is semipreopen then g°f is (g^{*} γ ,sp)-open function.

Proof: (i) Let V be any $g^* \gamma$ -open set in X. Since f is quasi- $g^* \gamma$ -open function, g(V) is open set in Y. Again, g is preopen function and g(V) is open set in Y, then g(f(V))=

 $(g \circ f)(V)$ is preopen set in Z. Thus, $g \circ f$ is $(g^* \gamma, p)$ -open function.

(ii) Obvious.

(iii) Obvious.

Theorem 3.8: Let $f: X \to Y$ be $g^* \gamma$ -open function and $g: Y \to Z$ be quasi- $g^* \gamma$ -open function then $g \circ f$ is open function.

Proof: Obvious.

Theorem 3.9: Let $f: X \to Y$ be quasi- $g^* \gamma$ -open function and $g: Y \to Z$ be $g^* \gamma$ -open function then $g \circ f$ is always $g^* \gamma$ -open function.

Proof: Obvious.

Theorem 3.10: Let $f: X \to Y$ and $g: Y \to Z$ be two functions and $g \circ f: X \to Z$ is quasi- $g^* \gamma$ -open function. If g is continuous injective, then f is quasi- $g^* \gamma$ -open.

Proof: Let U be a $g^* \gamma$ -open set in X. Then $(g \circ f)(U)$ is open in Z, since $g \circ f$ is quasi- $g^* \gamma$ -open. Again, g is an injective continuous function, $f(U) = g^{-1}((g \circ f)(U))$ is open in Y. This shows that f is quasi- $g^* \gamma$ -open function.

4. Quasi-
$$g^* \gamma$$
-closed functions

We define the following:

Definition 4.1: A function $f: X \to Y$ is said to be quasi- $g^* \gamma$ -closed if the image of each $g^* \gamma$ -closed set of X is closed set in Y.

Now we have the following characterizations:

Lemma 4.2: If a function $f: X \to Y$ is quasi- $g^* \gamma$ -closed, then $f^{-1}(Int(B)) \subseteq g^* \gamma$ Int $(f^{-1}(B))$ for every subset B of Y.

Proof: This proof is similar to the proof of lemma 3.3.

Theorem 4.3: A function $f: X \to Y$ is quasi- $g^* \gamma$ -closed if and only if for any subset B of Y and for any $g^* \gamma$ -open set G of X containing $f^{-1}(B)$, there exists an open set U of Y containing B such that $f^{-1}(U) \subseteq G$.

Proof: This proof is similar to the proof of the theorem 3.5.

Theorem 4.4: If $f: X \to Y$ and $g: Y \to Z$ are two quasi- $g^* \gamma$ -closed functions, then $g \circ f: X \to Z$ is quasi- $g^* \gamma$ -closed function.

Proof: Obvious.

Theorem 4.5: Let X and Y be topological spaces. Then the function $g: X \to Y$ is a quasi- $g^* \gamma$ -closed if and only if g(X) is closed in Y and $g(V) \setminus g(X \setminus V)$ is open in g(X) whenever V is g^*

 γ -open in X.

Proof: Necessity: Suppose $g: X \to Y$ is a quasi- $g^* \gamma$ -closed function. Since X is a $g^* \gamma$ -closed, g(X) is closed in Y and $g(V) \setminus g(X \setminus V) = g(V) \cap g(X) \setminus g(X \setminus V)$ is open in g(X) when V is $g^* \gamma$ -open in X.

Sufficiency: Suppose g(X) is closed in Y, $g(V) \setminus g(X \setminus V)$ is open in g(X) when V is $g^* \gamma$ -open in X and let C be closed in X. Then $g(C)=g(X) \setminus g(X \setminus C) \setminus g(C)$ is closed in g(X) and hence closed in Y.

Corollary 4.6: Let X and Y be topological spaces. Then asurjective function $g: X \to Y$ is quasi- $g^* \gamma$ -closed if and only if $g(V) \setminus g(X \setminus V)$ is open in Y whenever V is $g^* \gamma$ -open in X. **Proof:** Obvious.

Corollary 4.7: Let X and Y be topological spaces and let $g: X \to Y$ be a $g^* \gamma$ -continuous quasi- $g^* \gamma$ -closed surjection function. Then the topology on Y is $\{g(V) \setminus g(X \setminus V) : V \text{ is } g^* \gamma \text{ -open in } X\}.$

Proof: Let W be open in Y. Then $g^{-1}(W)$ is $g^* \gamma$ -open in X and $g(g^{-1}(W)) \setminus g(X \setminus g^{-1}(W))$

=W. Hence, all open sets of Y are of the form $g(V) \setminus g(X \setminus V)$, V is $g^* \gamma$ -open set in X. On the other hand, all sets of the form $g(V) \setminus g(X \setminus V)$, V is $g^* \gamma$ -open in X, are open in Y from corollary 4.6.

Theorem 4.8: Let X and Y be topological spaces with X as $g^* \gamma$ -normal space. If $g: X \to Y$ is $g^* \gamma$ -continuous quasi- $g^* \gamma$ -closed surjection function, then Y is normal. Proof: Let A and B be disjoint closed subsets of Y. Then $g^{-1}(A)$, $g^{-1}(B)$ are disjoint

 $g^* \gamma$ -closed subsets of X. Since X is $g^* \gamma$ -normal, there exists disjoint open sets V and W such that $g^{-1}(A) \subseteq V$ and $g^{-1}(B) \subseteq W$. Then $A \subseteq g(V) \setminus g(X \setminus V)$ and $B \subseteq g(W) \setminus g(X \setminus W)$. Further by corollary $4.6, g(V) \setminus g(X \setminus V)$ and $g(W) \setminus g(X \setminus W)$ are open sets in Y and clearly $(g(V) \setminus g(X \setminus V)) \cap$

 $(g(W) \setminus g(X \setminus W)) = \phi$. This shows that Y is normal.

Decompositions of quasi-g^{*} γ -closed functions:

Theorem 4.9: Let $f: X \to Y$ and $g: Y \to Z$ be two functions. Then (i) If f is $g^* \gamma$ -closed and g is quasi- $g^* \gamma$ -closed, then $g \circ f$ is closed. (ii) If f is quasi- $g^* \gamma$ -closed and g is $g^* \gamma$ -closed, then $g \circ f$ is always $g^* \gamma$ -closed. (iii) If f is $g^* \gamma$ -closed and g is quasi- $g^* \gamma$ -closed, then $g \circ f$ is quasi- $g^* \gamma$ -closed.

Proof: Obvious.

Theorem 4.9: Let $f: X \to Y$ and $g: Y \to Z$ be two functions such that $g \circ f: X \to Z$ is quasi- $g^* \gamma$ -closed function.

(i) If f is $g^* \gamma$ -irresolute surjective, then g is closed.

(ii) If g is $g^* \gamma$ -continuous injective, then f is always $g^* \gamma$ -closed.

Proof: (i) Suppose that F is an arbitrary closed set in Y. As f is $g^* \gamma$ -irresolute, $f^{-1}(F)$ is $g^* \gamma$ -closed in X. Since $g \circ f$ is quasi- $g^* \gamma$ -closed and f is surjective, $g \circ f(f^{-1}(F)) = g(F)$, which is closed in Z. This implies g is a closed function.

(ii) Suppose F is any $g^* \gamma$ -closed set in X. Since $g \circ f$ isquasi- $g^* \gamma$ -closed, $(g \circ f)(F)$ is closedin Z. Again, g is a $g^* \gamma$ -continuous injective function, $g^{-1}(g \circ f(F))=f(F)$, which is $g^* \gamma$ -closed in Y. This shows that f is always $g^* \gamma$ -closed function.

Theorem 4.11: Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. Then the following statements are valid:

(i) If f is quasi-g^{*} γ -closed and g is semiclosed, then $g \circ f$ is $(g^* \gamma s)$ -closed function.

(ii) If f is quasi-g^{*} γ -closed and g is preclosed then $g \circ f$ is $(g^* \gamma, p)$ -closed function.

(iii) If f is quasi-g^{*} γ -closed and g is semipreclosed then $g \circ f$ is $(g^* \gamma, sp)$ -closed function.

Proof: (i) Let V be any $g^* \gamma$ -closed set in X. Since f is quasi- $g^* \gamma$ -closed function, g(V) is closed set in Y. Again, g is semiclosed function and g(V) is closed set in Y, then $g(f(V))=(g \circ f)(V)$ is semiclosed set in Z. Thus, $g \circ f$ is $(g^* \gamma, s)$ -closed function.

(ii) Obvious.

(iii) Obvious.

References

[1] D. Andrijevic, "semipreopen sets", Math. Vesnic, 38(1),(1986), 24-32.

[2] D. Andrijevic, "On b-open sets", Mat. Vesnik, vol.48, no. 1-2, pp. 59-64, 1996.

[3] N. Biswas, "On some mappings in topological spaces", Bull. Calcutta. Math.Soc. 61(1969), 127-135.

[4] S. G. Crossley and S. K. Hildebrand, "On semiclosure" Texas, J. Sci., 22(1971), 99-112.

[5] A. A. El-Atik, "A study on some types of mappings on topological spaces", Master's Thesis, Tanta University, Egypt, 1997.

[6] S. N. El-Deep, I. A. Hasanein, A. S. Mashhour and T. Noiri, "On p-regular spaces", Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S), 27(75),(1983), 311-315.

[7] E. Ekici, "On 7 - normal spaces", Bull. Math. Soc. Sci. Math. Roumanie(N.S), vol. 50 (98), no. 3, pp. 259-272, 2007.

[8] N. Levine, "Semiopen sets and semi continuity in topological spaces", Amer. Math. Monthly, 70(1963), 36-41.

[9] A. S. Mashhour, M. E. Abd. El-Monsef and S. N. El-Deeb, "On pre continuous and weak pre continuous mappings", Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.

[10] A. S. Mashhour, M. E. Abd. El-Monsef and I. A. Hasanein, "On pre topological Spaces", Bull. Math. Soc. Sci. Math. R. S. Roumanie, 28(76)(1984), 39-45.

[11] A. I. El-Maghrabi, "More on γ -generalized closed sets in topology", J. of Taibah University for science, vol. 7(2013), pp. 114-119.

[12] G. B. Navalagi, "semipre-continuous functions and properties of generalized semipre-closed sets in topological spaces", IJMMS 29: 2(2002), pp. 85-98.

[13] Govindappa Navalagi and Savita. B. Megalamani, " $g^* \gamma$ -closed sets in topological Spaces, IJMR (accepted) (2018).

[14] Govindappa Navalagi and Savita. B. Megalamani, "Properties of $g^* \gamma$ -continuous Functions in topology" (submitted) (2018).

[15] Govindappa Navalagi and Savita. B. Megalamani, " $g^* \gamma$ -open functions and $g^* \gamma$ -closed functions" (submitted) (2018).

[16] T. Noiri, "A generalization of closed mappings", Atti. Accad.Naz.Lincei Rend. Cl.Sci. Fis. Mat. Natur(8)54(1973), 412-415.

[17] J. H. Park and Y. B. Park, "On sp-regular spaces", J. Indian Acad. Math. 17(1998) no. 2, 212-218.

