Quasi-g ${ }^{*} \gamma$-open functions in topology

${ }^{1}$ Govindappa Navalagi
Department of Mathematics, KIT Tiptur-572202, Karnataka, India
Email: gnavalagi@hotmail.com
${ }^{2}$ Savita B. Megalamani
Department of Mathematics, Government First Grade College, Davanagere-577004, Karnataka,
Email: savibalaji2013@gmail.com

The purpose of this paper is to introduce and study the notions of quasi- $\mathrm{g} * \gamma_{\text {-open }}$ functions , quasi- $\mathrm{g} * \gamma_{\text {-closed functions }}$ in topology via $\mathrm{g}^{*} \gamma$-closed

Mathematics Subject Classification(2010) : 54A05, 54C08.

Key words: γ-open sets, $\mathrm{g}^{*} \gamma$-closed sets $\mathrm{g} \mathrm{g}^{*} \gamma$-open sets, quasi- $\mathrm{g}{ }^{*} \gamma$-open functions and quasi- $\mathrm{g}^{*} \gamma$-closed functions.

1. Introduction

In 1997, A. A. El-Atik[5], has introduced and studied the concept of γ-open sets and γ-closed sets in topology. In 2007, E. Ekici[7] has defined and studied the concept of γ-normal spaces in topology and concepts of $\mathrm{g} \gamma$-closed sets and γ g-closed sets. In [13], [14] and [15], Navalagi et. al. defined and studied the concepts of $\mathrm{g}^{*} \gamma$-closed sets, $\mathrm{g}^{*} \gamma$-open sets, $\mathrm{g}^{*} \gamma$-continuous functions, $\mathrm{g}^{*} \gamma$-irresolute functions, strongly $\mathrm{g}^{*} \gamma$-continuous functions, $\mathrm{g}^{*} \gamma$-open functions, $\mathrm{g}^{*} \gamma$-closed functions and $\mathrm{g}^{*} \gamma_{\text {- }}$
normal spaces in topology. The aim of this paper is to define and study the concepts of quasi- $\mathrm{g} * \gamma_{\text {-open }}$ functions, quasi- $\mathrm{g} * \gamma_{\text {-closed }}$ functions.

2. Priliminaries

In this paper (X, τ) and (Y, σ) (or X and Y) we always mean topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset of $\mathrm{X}, \mathrm{Cl}(\mathrm{A})$ and $\operatorname{Int}(\mathrm{A})$ represent the closure of A and the interior of A respectively.

The following definitions and results are useful in the sequel:
Definition 2.1: Let X be a topological space. A subset A is called :
(i)semiopen[8] if $\mathrm{A} \subset \mathrm{Cl}(\operatorname{Int}(\mathrm{A}))$,
(ii)preopen[9] if $\mathrm{A} \subset \operatorname{Int}(\mathrm{Cl}(\mathrm{A}))$,
(iii)b-open[2] or sp-open[1] or γ-open[5] if $\mathrm{A} \subset \mathrm{Cl}(\operatorname{Int}(\mathrm{A})) \cup \operatorname{Int}(\mathrm{Cl}(\mathrm{A}))$.

The complement of semiopen (resp. peropen, b-open or sp-open or γ-open) set is called semiclosed[4] (resp. preclosed[9], b-closed[2] or sp-closed[1] or γ-closed[5]).

The family of all semiopen (resp. preopen, b-open or sp-open or γ-open) sets of a space X is denoted by $\mathrm{SO}(\mathrm{X})$ (resp. $\mathrm{PO}(\mathrm{X}), \mathrm{BO}(\mathrm{X}), \mathrm{SPO}(\mathrm{X})$ or $\gamma \mathrm{O}(\mathrm{X})$).

Definition 2.2: Let A be a subset of a space X, then the intersection of all semi-closed(resp. preclosed, semipre-closed, γ-closed) sets containing A is called semiclosure[4] (resp. preclosure[6] , semipreclosure[1], γ-closure[5]) of A and is denoted by $\mathrm{sCl}(\mathrm{A})($ resp. $\mathrm{pCl}(\mathrm{A}), \operatorname{spCl}(\mathrm{A}), \gamma \mathrm{Cl}(\mathrm{A}))$.

Definition 2.3: Let A be a subset of a space X, then semi-interior [4](resp. pre-interior[10], semipre-interior[1], γ-interior[5]) of A is the union of all semiopen(resp. preopen, semipreopem, γ -open) sets contained in A and is denoted by $\operatorname{sInt}(A)(r e s p . p \operatorname{Int}(A), \operatorname{spInt}(A), \gamma \operatorname{Int}(A))$.

Definition 2.4: A subset A of a space X is said to be $g \gamma-c l o s e d[7]$ if $\gamma \mathrm{Cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset$ U and $\mathrm{U} \in \tau$.

The complement of $\mathrm{g} \gamma$-closed set is said to be $\mathrm{g} \gamma$-open.

Definition 2.5: A subset A of a space X is said to be $\gamma \mathrm{g}$-closed[11] if $\gamma \mathrm{Cl}(\mathrm{A}) \subset \mathrm{U}$ whenever A $\subset \mathrm{U}$ and $\mathrm{U} \in \gamma \mathrm{O}(\mathrm{X})$.

The complement of $\gamma \mathrm{g}$-closed set is said to be $\gamma \mathrm{g}$-open.

The definitions of be $\mathrm{g} \gamma$-closed set and $\gamma \mathrm{g}$-closed set respectively, defined by E. Ekici[7] and El-Maghrabi[11] are the same.

Definition 2.6: A subset A of a space X is called $g^{*} \gamma-\operatorname{closed}[13]$ set if $\mathrm{Cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset$ U and U is γ-open set in X .

Definition 2.7: A subset A of a space X is called $g^{*} \gamma$-open[13] set if $F \subset \operatorname{Int}(A)$ whenever $F \subset$ A and F is γ-closed set in X .

The family of all $\mathrm{g}^{*} \gamma$-open sets in topological space X is denoted by $\mathrm{g}^{*} \gamma \mathrm{O}(\mathrm{X})$.

Definition 2.8: Let A be a subset of a space X , then the intersection of all $\mathrm{g}{ }^{*} \gamma$-closed sets containing A is called the $\mathrm{g}^{*} \gamma$-closure[13] of A and is denoted by $\mathrm{g}{ }^{*} \gamma \mathrm{Cl}(\mathrm{A})$.

Definition 2.9: Let A be a subset of a space X, then the union of all $\mathrm{g}^{*} \gamma$-open sets contained in A is called the $\mathrm{g}^{*} \gamma$-interior[13] of A and is denoted by $\mathrm{g}^{*} \gamma \operatorname{Int}(\mathrm{~A})$.

Definition 2.10: A set $\mathrm{U} \subset$ Xis said to be $\mathrm{g}^{*} \gamma$-neighbourhood [14] (in brief, $\mathrm{g}^{*} \gamma$-nbd) of a point $x \in X$ if and only if there exists $A \in g^{*} \gamma O(x)$ such that $A \subset U$.

Definition 2.11: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called semiopen[3](resp. preopen[10], semipreopen[12]), if the image of each open set of X is semiopen(resp. preopen, semopreopen) set in Y.

Definition 2.12: A function $f: X \rightarrow Y$ is called semiclosed[16](resp. preclosed[6], semipreclosed[12,17]), if the image of each open set of X is semiclosed(resp. preclosed, semopreclosed) set in Y.

Definition 2.13: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be $\mathrm{g}^{*} \gamma$-open[13] if the image of open set of X is $\mathrm{g}^{*} \gamma$-open in Y .

Definition 2.14: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be $\mathrm{g}^{*} \gamma$-closed[15] if the image of closed set of X is $\mathrm{g}^{*} \gamma$-closed set in Y .

Definition 2.15: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be $\left(\mathrm{g}^{*} \gamma, \mathrm{~s}\right)$-open[15](resp. ($\mathrm{g}^{*} \gamma, \mathrm{p}$) -open, $\left(\mathrm{g}^{*} \gamma\right.$,sp) -open[15]) if the image of each $\mathrm{g}^{*} \gamma$-open set of X is semiopen(resp. preopen, semipreopen) in Y.

Definition 2.16: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be ($\mathrm{g}^{*} \gamma, \mathrm{~s}$)-closed[15](resp. ($\mathrm{g}{ }^{*} \gamma, \mathrm{p}$)-closed, (g $\left.{ }^{*} \gamma, \mathrm{sp}\right)$-closed[15]) if the image of each $\mathrm{g}^{*} \gamma$-closed set of X is semiclosed (resp. preclosed, semipreclosed) in Y.

Definition 2.17: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be always $\mathrm{g}^{*} \gamma$-open[13] (resp. always $\mathrm{g}^{*} \gamma_{-}$ closed[13]), if the image of each $\mathrm{g}^{*} \gamma_{\text {-open(resp. }}{ }^{*} \gamma_{\text {-closed) }}$ set of X is $\mathrm{g}^{*} \gamma_{\text {-open(resp. }}{ }^{*} \gamma_{-}$ closed) set in Y

Definition 2.18: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be $\mathrm{g}^{*} \gamma$-continuous[13], if the inverse image of each open set of Y is $\mathrm{g}^{*} \gamma$-open set in X .

Definition 2.19: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be $\mathrm{g}^{*} \gamma$-irresolute[13], if the inverse image of each $\mathrm{g}^{*} \gamma$-open set of Y is $\mathrm{g}^{*} \gamma$-open set in X .

Definition 2.20: A space X is said to be $\mathrm{g}^{*} \gamma$-normal[15], if for any pair of disjoint closed sets A and B of X, there exist disjoint $g^{*} \gamma$-open sets U and V such that $A \subset U$ and $B \subset V$.

3. Quasi-g* ${ }^{*}$-open functions

We define the following:

Definition 3.1: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be quasi-g ${ }^{*} \gamma$-open if the image of each $\mathrm{g}^{*} \gamma_{-}$ open set of X is an open set in Y .

Now we have the following characterizations:

Theorem 3.2: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be quasi-g ${ }^{*} \gamma$-open if and only if for every subset U of $\mathrm{X}, \mathrm{f}\left(\mathrm{g}^{*} \gamma \operatorname{Int}(\mathrm{U})\right) \subset \operatorname{Int}(\mathrm{f}(\mathrm{U}))$.

Proof: Let f be a quasi-g* γ-open function. Now, we haveg ${ }^{*} \gamma \operatorname{Int}(\mathrm{U}) \subset \mathrm{U}$ and $\mathrm{g}^{*} \gamma$ $\operatorname{Int}(\mathrm{U})$ is a $\mathrm{g}^{*} \gamma$-open set. Hence we obtain that $\mathrm{f}\left(\mathrm{g}^{*} \gamma \operatorname{Int}(\mathrm{U})\right) \subset \mathrm{f}(\mathrm{U})$. As $\mathrm{f}\left(\mathrm{g}^{*} \gamma \operatorname{Int}(\mathrm{U})\right)$ is open, $\quad \mathrm{f}\left(\mathrm{g}^{*} \gamma \operatorname{Int}(\mathrm{U})\right) \subset \operatorname{Int}(\mathrm{f}(\mathrm{U}))$.
Conversely, assume that U is a $\mathrm{g}^{*} \gamma$-open set in X. Then $\mathrm{f}(\mathrm{U})=\mathrm{f}\left(\mathrm{g}^{*} \gamma \operatorname{Int}(\mathrm{U})\right) \subset \operatorname{Int}(\mathrm{f}(\mathrm{U}))$, but $\operatorname{Int}\left(\mathrm{f}(\mathrm{U}) \subset \mathrm{f}(\mathrm{U})\right.$. Consequently $\mathrm{f}(\mathrm{U})=\operatorname{Int}(\mathrm{f}(\mathrm{U}))$, which is open and hence f is quasi- $\mathrm{g}^{*} \gamma$-open function.

Lemma 3.3: If a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is quasi-g ${ }^{*} \gamma$-open, then $\mathrm{g}^{*} \gamma \operatorname{Int}\left(\mathrm{f}^{-1}(\mathrm{~A})\right) \subset \quad \mathrm{f}^{-1}(\operatorname{Int}(\mathrm{~A}))$ for every subset A of Y.

Proof: Let A be any subset of Y . Then, $\mathrm{g}^{*} \gamma \operatorname{Int}\left(\mathrm{f}^{-1}(\mathrm{~A})\right)$ is a $\mathrm{g}^{*} \gamma$-open set in X and f is quasi-g ${ }^{*} \gamma$-open, then $\mathrm{f}\left(\mathrm{g}^{*} \gamma \operatorname{Int}\left(\mathrm{f}^{-1}(\mathrm{~A})\right)\right) \subset \operatorname{Int}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~A})\right)\right) \subset \operatorname{Int}(\mathrm{A})$. Thus, $\mathrm{g}^{*} \gamma \operatorname{Int}\left(\mathrm{f}^{-1}(\mathrm{~A})\right) \subset \mathrm{f}^{-1}(\operatorname{Int}(\mathrm{~A}))$.

Theorem 3.4: For a function $f: X \rightarrow Y$, the following are equivalent:
(i) f is quasi-g ${ }^{*} \gamma$-open
(ii) for each subset U of $\mathrm{X}, \mathrm{f}\left(\mathrm{g}^{*} \gamma \operatorname{Int}(\mathrm{U})\right) \subset \operatorname{Int}(\mathrm{f}(\mathrm{U}))$
(iii) for each $\mathrm{x} \in \mathrm{X}$ and each $\mathrm{g}^{*} \gamma$-neighbourhood U of x in X , there exists a neighbourhood V of $f(x)$ in Y such that $V \subset f(U)$.

Proof: (i) \Rightarrow (ii) It follows from the theorem 3.2.
(ii) \Rightarrow (iii) Let $\mathrm{x} \in \mathrm{X}$ and U be an arbitrary $\mathrm{g}^{*} \gamma$-neighbourhood of x in X . Then there exist a $\mathrm{g}^{*} \gamma$ -open set V in X such that $x \in V \subset U$. Then by (ii), we have $f(V)=$
$\mathrm{f}\left(\mathrm{g}^{*} \gamma \operatorname{Int}(\mathrm{~V})\right) \subset \operatorname{Int}(\mathrm{f}(\mathrm{V}))$ and hence $\mathrm{f}(\mathrm{V})=\operatorname{Int}(\mathrm{f}(\mathrm{V}))$. Therefore, it follows that $\mathrm{f}(\mathrm{V})$ is open in Y such that $\mathrm{f}(\mathrm{x}) \in \mathrm{f}(\mathrm{V}) \subset \mathrm{f}(\mathrm{U})$.
(iii) \Rightarrow (i) Let U be an arbitrary $\mathrm{g}^{*} \gamma$-open set in X . Then for each $\mathrm{y} \in \mathrm{f}(\mathrm{U})$, by (iii) there exist a neighbourhood V_{y} of y in Y such that $V_{y} \subset f(U)$. As V_{y} is a neighbourhood of y, there exist an open set W_{y} in Y such that $y \in W_{y} \subset V_{y}$. Thus
$f(U)=U\left\{W_{y}: y \in f(U)\right\}$ which is a open set in Y. This implies that f is quasi-g ${ }^{*} \gamma$-open function.

Theorem 3.5: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is quasi-g ${ }^{*} \gamma$-open if and only if for any subset B of Y and for any $\mathrm{g}^{*} \gamma$-closed set F of X containing $\mathrm{f}^{-1}(\mathrm{~B})$, there exist a closed set G of Y containing B such that $\mathrm{f}^{-1}(\mathrm{G}) \subset \mathrm{F}$.

Proof: Suppose f is quasi-g ${ }^{*} \gamma$-open function. Let $\mathrm{B} \subset \mathrm{Y}$ and F be a $\mathrm{g}^{*} \gamma$-closed set of X containing $f^{-1}(B)$. Now, put $G=Y \backslash f(X-F)$. It is clear that $f^{-1}(B) \subset F$ implies $B \subset G$. Since f is quasi-g ${ }^{*} \gamma$-open , we obtain G as a closed set of Y. Moreover, we have $\mathrm{f}^{-1}(\mathrm{G}) \subset \mathrm{F}$.

Conversely, let U be a $g^{*} \gamma$-open set of X and put $B=Y \backslash f(U)$. Then $X \backslash U$ is a $g^{*} \gamma$-closed set in X containing $f^{-1}(B)$. By hypothesis, there exists a closed set F of Y such that $B \subset F$ and $f^{-1}(F)$ $\subset X \backslash U$. Hence, we obtain $f(U) \subset Y \backslash F$. On the other hand, it follows that $B \subset F, \quad Y \backslash F \subset Y \backslash B=f(U)$. Thus, we obtain $\mathrm{f}(\mathrm{U})=\mathrm{Y} \backslash \mathrm{F}$ which is open and hence f is a quasi-g ${ }^{*} \gamma$-open function.

Theorem 3.6: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a quasi-g ${ }^{*} \gamma$-open if and only if $\mathrm{f}^{-1}(\mathrm{Cl}(\mathrm{B})) \subset$ $\mathrm{g}^{*} \gamma \mathrm{Cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ for every subset B of Y .

Proof: Suppose that f is quasi-g ${ }^{*} \gamma$-open function. For any subset B of $\mathrm{Y}, \mathrm{f}^{-1}(\mathrm{~B}) \subset \mathrm{g}^{*} \gamma \mathrm{Cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$. Therefore, by theorem 3.5 , there exists a closed set F in Y such that $\mathrm{B} \subset \mathrm{F}$ andf ${ }^{-1}(\mathrm{~F}) \subset \mathrm{g}^{*} \gamma \mathrm{Cl}\left(\mathrm{f}^{-}\right.$ $\left.{ }^{1}(\mathrm{~B})\right)$. Therefore, we obtain $\mathrm{f}^{-1}(\mathrm{Cl}(\mathrm{B})) \subset \mathrm{f}^{-1}(\mathrm{~F}) \subset \mathrm{g}^{*} \gamma \mathrm{Cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$.

Conversely, let $B \subset Y$ and F be a $g^{*} \gamma$-closed set of X containing $f^{-1}(B)$. Put $W=C l Y(B)$, then we have $\mathrm{B} \subset \mathrm{W}$ and W is closed set and $\mathrm{f}^{-1}(\mathrm{~W}) \subset \mathrm{g}^{*} \gamma \mathrm{Cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subset \mathrm{F}$.
Then by theorem 3.5, f is quasi-g ${ }^{*} \gamma$-open function.

Decompositions of quasi-g ${ }^{*} \gamma$-open functions:

Theorem 3.7: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be two functions. The following statements are valid:
(i) If f is quasi- $\mathrm{g}^{*} \gamma$-open and g is preopen then $\mathrm{g} \circ \mathrm{f}$ is $\left(\mathrm{g}^{*} \gamma, \mathrm{p}\right)$-open function.
(ii) If f is quasi-g ${ }^{*} \gamma$-open and g is semiopen then $\mathrm{g} \circ \mathrm{f}$ is $\left(\mathrm{g}^{*} \gamma, \mathrm{~s}\right)$-open function.
(iii) If f is quasi-g ${ }^{*} \gamma$-open and g is semipreopen then $\mathrm{g} \circ \mathrm{f}$ is $\left(\mathrm{g}^{*} \gamma, \mathrm{sp}\right)$-open function.

Proof: (i) Let V be any $\mathrm{g}^{*} \gamma$-open set in X. Since f is quasi-g ${ }^{*} \gamma$-open function, $\mathrm{g}(\mathrm{V})$ is open set in Y. Again, g is preopen function and $g(V)$ is open set in Y, then $g(f(V))=$ $(\mathrm{g} \circ \mathrm{f})(\mathrm{V})$ is preopen set in Z. Thus, $\mathrm{g} \circ \mathrm{f}$ is $\left(\mathrm{g}^{*} \gamma, \mathrm{p}\right)$-open function.
(ii) Obvious.
(iii) Obvious.

Theorem 3.8: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be $\mathrm{g}^{*} \gamma$-open function and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be quasi-g ${ }^{*} \gamma$-open function then $g \circ f$ is open function.

Proof: Obvious.

Theorem 3.9: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be quasi-g ${ }^{*} \gamma$-open function and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be $\mathrm{g}^{*} \gamma$-open function then $\mathrm{g} \circ \mathrm{f}$ is always $\mathrm{g}^{*} \gamma$-open function.

Proof: Obvious.

Theorem 3.10: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be two functions and $\mathrm{g} \circ \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is quasi- $\mathrm{g}^{*} \gamma$-open function. If g is continuous injective, then f is quasi- $\mathrm{g}^{*} \gamma$-open.

Proof: Let U be a $g^{*} \gamma$-open set in X. Then $(g \circ f)(U)$ is open in Z, since $g \circ f$ is quasi-g ${ }^{*} \gamma$-open. Again, g is an injective continuous function, $f(U)=g^{-1}((g \circ f)(U))$ is open in Y. This shows that f is quasi-g ${ }^{*} \gamma$-open function.

$$
\text { 4. Quasi- } \mathrm{g}^{*} \gamma \text {-closed functions }
$$

We define the following:

Definition 4.1: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be quasi-g ${ }^{*} \gamma$-closed if the image of each $\mathrm{g}^{*} \gamma_{-}$ closed set of X is closed set in Y .

Now we have the following characterizations:

Lemma 4.2: If a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is quasi-g ${ }^{*} \gamma$-closed, then $\mathrm{f}^{-1}(\operatorname{Int}(\mathrm{~B})) \subset \mathrm{g}^{*} \gamma \operatorname{Int}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ for every subset B of Y.

Proof: This proof is similar to the proof of lemma 3.3.

Theorem 4.3: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is quasi-g ${ }^{*} \gamma$-closed if and only if for any subset B of Y and for any $\mathrm{g}^{*} \gamma$-open set G of X containing $\mathrm{f}^{-1}(\mathrm{~B})$, there exists an open set U of Y containing B such that $\mathrm{f}^{-1}(\mathrm{U}) \subset \mathrm{G}$.

Proof: This proof is similar to the proof of the theorem 3.5.

Theorem 4.4: If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ are two quasi-g ${ }^{*} \gamma$-closed functions, then $\mathrm{g} \circ \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is quasi-g ${ }^{*} \gamma$-closed function.

Proof: Obvious.

Theorem 4.5: Let X and Y be topological spaces. Then the function $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}$ is a quasi- ${ }^{*} \gamma_{*-}$ closed if and only if $g(X)$ is closed in Y and $g(V) \backslash g(X \backslash V)$ is open in $g(X)$ whenever V is g^{*} γ-open in X.

Proof: Necessity: Suppose $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}$ is a quasi-g ${ }^{*} \gamma$-closed function. Since X is a $\mathrm{g}^{*} \gamma$-closed, $g(X)$ is closed in Y and $g(V) \backslash g(X \backslash V)=g(V) \cap g(X) \backslash g(X \backslash V)$ is open in $g(X)$ when V is $g^{*} \gamma-$ open in X .

Sufficiency: Suppose $g(X)$ is closed in $Y, g(V) \backslash g(X \backslash V)$ is open in $g(X)$ when V is $g^{*} \gamma$-open in X and let C be closed in X. Then $g(C)=g(X) \backslash g(X \backslash C) \backslash g(C)$ is closed in $g(X)$ and hence closed in Y .

Corollary 4.6: Let X and Y be topological spaces. Then asurjective function $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}$ is quasi-g ${ }^{*} \gamma$-closed if and only if $\mathrm{g}(\mathrm{V}) \backslash \mathrm{g}(\mathrm{X} \backslash \mathrm{V})$ is open in Y whenever V is $\mathrm{g}^{*} \gamma$-open in X .

Proof: Obvious.

Corollary 4.7: Let X and Y be topological spaces and let $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}$ be a $\mathrm{g}^{*} \gamma$-continuous quasi-g* γ-closed surjection function. Then the topology on Y is $\left\{g(V) \backslash g(X \backslash V): V\right.$ is $g^{*} \gamma$-open in $\left.X\right\}$.

Proof: Let W be open in Y . Then $\mathrm{g}^{-1}(\mathrm{~W})$ is $\mathrm{g}^{*} \gamma$-open in X and $\mathrm{g}\left(\mathrm{g}^{-1}(\mathrm{~W})\right) \backslash \mathrm{g}\left(\mathrm{X} \backslash \mathrm{g}^{-1}(\mathrm{~W})\right)$ $=W$. Hence, all open sets of Y are of the form $g(V) \backslash g(X \backslash V), V$ is $g^{*} \gamma$-open set in X. On the other hand, all sets of the form $\mathrm{g}(\mathrm{V}) \backslash \mathrm{g}(\mathrm{X} \backslash \mathrm{V})$, V is $\mathrm{g}^{*} \gamma$-open in X , are open in Y from corollary 4.6.

Theorem 4.8: Let X and Y be topological spaces with X as $g^{*} \gamma$-normal space. If $g: X \rightarrow Y$ is $\mathrm{g}^{*} \gamma_{\text {-continuous quasi-g }}{ }^{*} \gamma$-closed surjection function, then Y is normal. Proof: Let A and B be disjoint closed subsets of Y . Then $\mathrm{g}^{-1}(\mathrm{~A}), \mathrm{g}^{-1}(\mathrm{~B})$ are disjoint
$\mathrm{g}^{*} \gamma$-closed subsets of X . Since X is $\mathrm{g}^{*} \gamma$-normal, there exists disjoint open sets V and W such that $\mathrm{g}^{-1}(\mathrm{~A}) \subset \mathrm{V}$ and $\mathrm{g}^{-1}(\mathrm{~B}) \subset \mathrm{W}$. Then $\mathrm{A} \subset \mathrm{g}(\mathrm{V}) \backslash \mathrm{g}(\mathrm{X} \backslash \mathrm{V})$ and $\mathrm{B} \subset \mathrm{g}(\mathrm{W}) \backslash \mathrm{g}(\mathrm{X} \backslash \mathrm{W})$. Further by corollary $4.6, g(V) \backslash g(X \backslash V)$ and $g(W) \backslash g(X \backslash W)$ are open sets in Y and clearly $(g(V) \backslash g(X \backslash V)) \cap$ $(g(W) \backslash g(X \backslash W))=\phi$. This shows that Y is normal.

Decompositions of quasi-g ${ }^{*} \gamma$-closed functions:

Theorem 4.9: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be two functions. Then
(i) If f is $\mathrm{g}^{*} \gamma$-closed and g is quasi- $\mathrm{g}^{*} \gamma$-closed, then $\mathrm{g} \circ \mathrm{f}$ is closed.
(ii) If f is quasi-g ${ }^{*} \gamma$-closed and g is $\mathrm{g}^{*} \gamma$-closed, then $\mathrm{g} \circ \mathrm{f}$ is always $\mathrm{g}^{*} \gamma$-closed.
(iii) If f is $\mathrm{g}^{*} \gamma$-closed and g is quasi-g ${ }^{*} \gamma$-closed, then $\mathrm{g} \circ \mathrm{f}$ isquasi-g ${ }^{*} \gamma$-closed.

Proof: Obvious.

Theorem 4.9: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be two functions such that $\mathrm{g} \circ \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is quasi- ${ }^{*} \gamma_{-}$ closed function.
(i)If f is $\mathrm{g}^{*} \gamma$-irresolute surjective, then g is closed.
(ii) If g is $\mathrm{g}^{*} \gamma$-continuous injective, then f is always $\mathrm{g}^{*} \gamma$-closed.

Proof: (i) Suppose that F is an arbitrary closed set in Y. As f is $\mathrm{g}^{*} \gamma$-irresolute, $\mathrm{f}^{-1}(\mathrm{~F})$ isg ${ }^{*} \gamma$-closed in X. Since $\mathrm{g} \circ \mathrm{f}$ isquasi-g ${ }^{*} \gamma$-closed and f is surjective, $\mathrm{g} \circ \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~F})\right)=$ $\mathrm{g}(\mathrm{F})$, which is closed in Z . This implies g is a closed function.
(ii) Suppose F is any $\mathrm{g}^{*} \gamma$-closed set in X. Since $\mathrm{g} \circ \mathrm{f}$ isquasi-g ${ }^{*} \gamma$-closed, $(\mathrm{g} \circ \mathrm{f})(\mathrm{F})$ is closedin Z. Again, g is a $g^{*} \gamma$-continuous injective function, $g^{-1}(g \circ f(F))=f(F)$, which is $g^{*} \gamma$-closed in Y. This shows that f is always $\mathrm{g}^{*} \gamma$-closed function.

Theorem 4.11: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be two functions. Then the following statements are valid:
(i) If f is quasi- $\mathrm{g}^{*} \gamma$-closed and g is semiclosed, then $\mathrm{g} \circ \mathrm{f}$ is $\left(\mathrm{g}^{*} \gamma, \mathrm{~s}\right)$-closed function.
(ii) If f is quasi-g ${ }^{*} \gamma$-closed and g is preclosed then $\mathrm{g}^{\circ} \mathrm{f}$ is $\left(\mathrm{g}^{*} \gamma, \mathrm{p}\right)$-closed function.
(iii) If f is quasi-g ${ }^{*} \gamma$-closed and g is semipreclosed then $\mathrm{g} \circ \mathrm{f}$ is $\left(\mathrm{g}^{*} \gamma, \mathrm{sp}\right)$-closed function.

Proof: (i) Let V be any $\mathrm{g}^{*} \gamma$-closed set in X. Since f is quasi-g ${ }^{*} \gamma$-closed function, $\mathrm{g}(\mathrm{V})$ is closed set in Y. Again, g is semiclosed function and $g(V)$ is closed set in Y, then $g(f(V))=(g \circ f)(V)$ is semiclosed set in Z . Thus, $\mathrm{g} \circ \mathrm{f}$ is $\left(\mathrm{g}^{*} \gamma, \mathrm{~s}\right)$-closed function.
(ii) Obvious.
(iii) Obvious.

References

[1] D. Andrijevic, "semipreopen sets", Math. Vesnic, 38(1),(1986), 24-32.
[2] D. Andrijevic, "On b-open sets", Mat. Vesnik, vol.48, no. 1-2, pp. 59-64, 1996.
[3] N. Biswas, " On some mappings in topological spaces", Bull. Calcutta. Math.Soc. 61(1969), 127135.
[4] S. G. Crossley and S. K. Hildebrand, "On semiclosure" Texas, J. Sci., 22(1971), 99-112.
[5] A. A. El-Atik, "A study on some types of mappings on topological spaces", Master's Thesis, Tanta University, Egypt, 1997.
[6] S. N. El-Deep, I. A. Hasanein, A. S. Mashhour and T. Noiri, " On p-regular spaces", Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S), 27(75),(1983), 311-315.
[7] E. Ekici, "On γ - normal spaces", Bull. Math. Soc. Sci. Math. Roumanie(N.S), vol. 50 (98), no. 3, pp. 259-272, 2007.
[8] N. Levine, "Semiopen sets and semi continuity in topological spaces", Amer. Math. Monthly, 70(1963), 36-41.
[9] A. S. Mashhour, M. E. Abd. El-Monsef and S. N. El-Deeb, "On pre continuous and weak pre continuous mappings", Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
[10] A. S. Mashhour, M. E. Abd. El-Monsef and I. A. Hasanein, " On pre topological Spaces", Bull. Math. Soc. Sci. Math. R. S. Roumanie, 28(76)(1984), 39-45.
[11] A. I. El-Maghrabi, "More on γ-generalized closed sets in topology", J. of Taibah University for science, vol. 7(2013), pp. 114-119.
[12] G. B. Navalagi, " semipre-continuous functions and properties of generalized semipre-closed sets in topological spaces", IJMMS 29: 2(2002), pp. 85-98.
[13] Govindappa Navalagi and Savita. B. Megalamani, "g* ${ }^{*}$-closed sets in topological Spaces, IJMR (accepted) (2018).
[14] Govindappa Navalagi and Savita. B. Megalamani, " Properties of $\mathrm{g}^{*} \gamma$-continuous Functions in topology" (submitted) (2018).
[15] Govindappa Navalagi and Savita. B. Megalamani, "g ${ }^{*} \gamma$-open functions and $\mathrm{g}^{*} \gamma$-closed functions" (submitted) (2018).
[16] T. Noiri, "A generalization of closed mappings", Atti. Accad.Naz.Lincei Rend. Cl.Sci. Fis. Mat. Natur(8)54(1973), 412-415.
[17] J. H. Park and Y. B. Park, " On sp-regular spaces", J. Indian Acad. Math. 17(1998) no. 2, 212-218.

